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DYNAMIC EVALUATION OF A TRACTION-DRIVE JOINT FOR SPACE TELEROBOTS

Clarence W. deSilva* and Walter W. Hankins III

ABSTRACT

This paper presents an analysis and evaluation of a prototype traction-drive
joint for robotic manipulators, developed under the sponsorship of NASA. A dynamic
model is developed using the Lagrange formulation. Controllability, observability,
dynamic stability, and response characteristics of the joint to test inputs are
studied. A linear quadratic regulator (LQR) is implemented on the joint model to
determine a basis for evaluating the performance of the traction-drive joint under
servo control. An evaluation of the results and directions for future investigations

are presented.

*NSERC Professor of Industrial Automation, Department of Mechanical Engineering,
University of British Columbia



SYMBOLS

Scalar Parameters

bl

b2

b3

b4

b51

b52

b6

J1

J2

J3

J4

J51

J52

J6

Jc

K

L

nr

n I

Qi

T

combined damping constant at the motor and drive side of the

speed reducer (oz.in/rad/s)

combined damping constant at the driven side of the speed reducer

and input side of the drive roller (oz.in/rad/s)

damping constant at the output side of the drive roller (oz.in/rad/s)

damping constant at a differential wheel (oz.in/rad/s)

roll (yaw) damping constant at the output member (oz.in/rad/s)

pitch damping constant at the roll output member (oz.in/rad/s)

pitch damping constant of the output coupling member (oz.in/rad/s)

combined inertia of the motor rotor and drive side of the speed reducer
(oz.in.s 2)

combined inertia of the driven side of the speed reducer and input
side of the drive roller (oz.in.s 2)

inertia of the output side of the drive roller (oz.in.s 2)

inertia of one differential wheel (oz.in.s 2)

roll (yaw) inertia of the output member (oz.in.s 2)

pitch inertia of the roll member (oz.in.s 2)

pitch inertia of the output coupling member (oz.in.s 2)

roll-pitch cross inertia of tile output member (oz.in.s 2)

torsional stiffness of the drive roller (oz.in/rad)

lagrangian of the joint (oz.in)

speed ratio of the motor speed reducer

speed ratio of the differential

generalized force associated with the coordinate 0i (oz.in)

kinetic energy of the joint (oz.in.rad)



T2

Tml

Tm2

ui

V

W

xi

Yi

torque through the second drive roller (oz.in)

output torque of tile first servomotor (oz.in)

output torque of the second servomotor (oz.in)

an input variable

potential energy of the joint (oz.in.rad)

virtual work (oz.in.rad)

a state variable

an output variable

Vectors and Matrices

A

B

C

D

U

X

Y

- system matrix

- input distribution matrix

- output (measurement) _ain matrix

- feedforward gain matrix

- input vector

- state vector

- output vector

Greek Symbols

01

_2

03

o4

- angle of rotation of the first motor

- angle of rotation of the second motor

- output angle of the first drive roller

- output angle of the second drive roller

ro|l (yaw) output angle of the joint

pitch output angle of the joint



INTRODUCTION

Most industrial robots are open-link chains driven by actuating the link joints

of a manipulator. DC motors, AC synchronous motors, induction motors, stepping
motors, or hydraulic actuators may be used as the joint actuators. Since con-

ventional motors provide speeds that are too high for most robotic tasks and since

high driving torques are desirable, speed reducers such as gear transmissions, timing

belts, and sprocket and chain devices are usually incorporated at the manipulator

joints, gear transmissions can introduce backlash, which can result in low stiff-

ness, degraded accuracy and repeatability, accelerated wear, noise and vibration, and

dynamic and control problems, including limit cycle response. Backlash can be

reduced using special gear designs. Harmonic drives, for example [I], incorporate
preloading at the tooth mesh region, but this can increase friction and local
stresses.

Direct-drive manipulators use high-torque, low-speed DC motors without gear

reducers [2, 3]. They are known to have low levels of joint friction and practically

no backlash. Unfortunately, however, a direct-drive joint tends to be considerably

heavier than a conventional joint having comparable capabilities. This would demand

stronger and heavier links with associated reductions in bandwidth and increased

flexibility problems.

Recently, the use of traction (friction) drive has been proposed as an alterna-

tive to gear transmission, and a manipulator using traction drives for the joints is

being developed [4]. This promises improvements in the manipulator performance in

terms of accuracy and efficiency. In particular, backlash problems would be virtu-

ally nonexistent and the frictional disspation would be small. Futhermore, it has

the potential for high stiffness and smooth operation, with overload protection
naturally built in to the joint through the friction-drive mechanism. However,

traction drives are known to have two disadvantages. They are bigger and heavier

than gear transmissions and practical experience with them is limited.

This paper presents a dynamic analysis and evaluation of a traction-drive joint,

particularly from the control point of view. A dynamic model is developed for the

joint. Its behavior is evaluated using controllability, observability, stability,

and response analyses. Next the servo control problem of a single joint is studied

in terms of the required outputs for the feedback servo and with regard to the

optimal performance.

LABORATORY TELEROBOTIC MANIPULATOR

System Design

NASA Langley Research Center is currently sponsoring construction of a Labora-

tory Telerobotic Manipulator (LTM) by the Department of Energy's Oak Ridge National
Laboratory [4]. LTM will be able to be operated as a dual arm force-reflecting

master/slave teleoperator, or as a robot, using distributed high-speed micro-

processors. LTM has redundant kinematics, supplied by differential traction drives

at the shoulder, elbow and wrist joints, plus a seventh (roll) degree of freedom at
the wrist (fig. 1).
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Differential Traction Drive Joint
Figure 2 is a schematic drawing of the LII_ traction-drive joint. Figure 3(a)

shows a traction drive differential test fixture. A close-up of the drive rollers is
shown in figure 3(b). The two input rollers are frictionally engaged with two inter-
mediate wheels of much larger diameter, which form a differential mechanism. These
two differential wheels are in turn frictionally engaged with a single output
roller. When tile two differential wheels rotate in opposite directions at the same
speed, the output roller will undergo a roll motion about its axis. When the two
differential wheels rotate in the same direction at equal speeds, the output roller
will pitch without any rolling motion. In this manner two degrees of freedom are
provided by a single joint. Note that the roll motion of the output roller can be
interpreted as a yaw motion if the output shaft is bent through 90 degrees. Also,
any combination of yaw and pitch motions can be produced at the output of the joint
simply by adjusting the motion's of the two input rollers which are driven using DC
servo motors. Digital shaft encoders for position (and speed) sensing, tachometers
for analog speed sensing, and torque sensors are incorporated in each axis. These
sensors will provide the feedback signals for the operation of the joint servo.

DYNAMIC MODEL

Lagrange Equations

The traction-drive joint described in the previous section may be modeled as in

Figure 4. Motor torques, not drive voltages, are used as the inputs to the joint.

The rationale here is that the coupling of the motor back e.m.f, can be compensated

by using a local current feedback loop in the drive amplifier. The Lagrange energy

method is used to establish the dynamic equations for the joint. Joint backlash is

neglected, and energy dissipation is modeled as viscous damping. Flexibility of the

input drive roller is represented by a torsional stiffness K. Other moving com-
ponents are individually assumed to be rigid. The moment of inertia of each such

component is denoted by J, with a suitable subscript. Each inertia component will

also have an associated damping constant that is denoted by b with the same sub-

script. Suppose:

Jl = combined inertia of motor rotor and drive side of the speed reducer

J2 = combined inertia of the driven side of the speed reducer and input
side of the drive roller

J3 = inertia of the output side of the drive roller

J4 = inertia of one differential wheel

The output member has two axes of rotation, denoted as roll axis and pitch axis in
figure 4. This member actually consists of two rigid components. The output shaft
that is directly engaged with the differential wheels has an inertia J51 about
the roll (yaw) axis and an inertia J52 about the pitch axis. The cross member
transmits the pitch motion of the output shaft and it has a pitch inertia of J6"
This member does not undergo a roll (yaw) motion. It follows that by considering the
two orthogonal axes of motion (roll and pitch), the inertia matrix of the combined
output member may be expressed as



[J ji12
in which Jc is the cross inertia that represents the inertial coupling between
the two axes, resulting from the fact that the roll axis and the pitch axis are not

the principal axes of inertia of the output member, in general.

Suppose 31 and o2 denote the angles of rotation of the two motors, and

03 and o4 be the angles of rotation at the output ends of the drive rollers, as

indicated in Figure 4. If nR is the gear ratio of the speed reducer, the

rotations at the input ends of the drive rollers will be 01/n R and o2/nR
as shown. Also, _3/nl and o4/nI will be the rotations of the differ-

ential wheels, nI being the transmission ratio from the drive roller to the

differential wheel. We can decompose each of these angles into two components as

o3 ( 03 + 04) ( 03 - 04)

nI 2nI + 2n I

(I)

04 (03 + 04) (03 - 04)

nI 2nI 2n I
(2)

Note that the first component on the right hand side of each equation represents

differential wheel rotations through the same angle in the same direction and the

second component represents differential wheel rotations through the same angle in

opposite directions. Now assuming the transmission ratio from the differential

wheels to the output member to be unity along both roll and pitch axes we observe

that the roll (yaw) angle is

o3 + ')4
_P- 2n

i
(3)

and the pitch angle is

_3 - _4
'_>=' 2n

i

(4)

Kinetic energy of the output member is given by

I

(_3 +_4)2n (_3-n_) 1 FJ51 Jc
LJc J52

I((_)3+ _4)/(2ni)_3- 94)/(2nl)

i
2 J51

03 + 64

2n
i

2 o3 - °4

+ ½J52 L 2nl ] + Jc' 4n_



The overall kinematic energy of the entire joint is given by

.2

LnrJ

•2 F_3l2

[ ] ILl2 - _4 (03

93 + _4 + ½ (J52+ J6) + Jc 4ni-_-J51 2n I i

(5)

Next denoting the torsional stiffness of the drive roller by K, the potential
energy of the entire unit may be expressed as

i[0112102_]iV:TK _-9 3 +_K _ _4
(6)

Note that gravity terms have been neglected in this expression; we are concerned with
microgravity operation of the joint in space applications.

The Lagrangian L is formed according to

L = T - V (7)

in which oi, 02, L3, and o4 form a complete set of generalized coordinates
for the joint. Then the equations of motion for the joint are obtained by forming
the Lagrange equations:

d :;L 3L (8)
Qi

dt :)CJ. ae.
1 1

for i = i, 2, 3, and 4.

It remains to obtain expressions for the generalized forces Qi. To do this the

generalized coordinates are incremented and the resulting virtual work 5W due to
the nonconservative forces (torques) is determined. The associated virtual work is

given by

_I 601

_W = Tml r:]I Jr Tm2 502 - ble I _oI - ble 2 602 - b2 _ nR

603
- b3_J3_e3 - b3_)4_'_4 - b4 131 nl



(83 + 84)(';)3 + _)4 ) (_3 _4)(_03 - 604)

- b51 2nI _-n-1 b52 ---2-nl 2nI b

('_3- (34)(8°3- 6o4)

6 '--2n 1 2n I

= QI _°I + Q26°2 + Q35°3 + Q4 604 (9)

Note that Qi are determined simply by comparing the two sides of equation (9).

Finally, by combining all these results the following Lagrange equations of motion
are obtained-

Ij J21
i + +-To I

nR

J2

i + -_ 'J2 +

nR

b + _R21_)I + K el _ K 0 =

h 1

n_ n R 3 Tml

b2 + K K

:

(10)

(11)

I J4 (J51 + J52 + J6 ) J 1J3 + n-n_1 4- +c_] °34n_ 2n - J6J51 4n152
"64

+Ib3 + b4 + (b51 + b52 + b6)J I b5 - b6] - K gl = 0nI 4n_ _3 + 1 in152 _4 K93--6 R

(12)

J3 n-_-I 4n_ _n "d4 514n_ '03

(33+ KO 4 -6R 32 02 _)4 + b51 - b52 b6 - =

n I 4n I 4n_

(13)

It is desirable to eliminate the variables 03 and 04 using the roll angle

and the pitch angle 3. This can be accomplished by manipulating the last two

equations of motion given above. First, for brevity, define the following

parameters:

j =J
leq

J2
I+--,2 -

nR

(14)

2eq
=j

(J51 + J52 + J6 ) (15)



J3eq -
J52 + J6 - J51

2
4n

1

J
cj -

ceq 2n_

Also, ble q, b2eQ, and b3e q are defined in an analogous manner. Then the
dynamic equations for the joint can be written as

Kn I

J1eq()'l + bleqO I + n_R el - n--_-(_ + _) = Tml

Jleq'O2 + bleq_)2 + n_ 92 - -_-_(_ - _) = Tm2
R

(J2eq - J3eq ):_ + J_' + (b2eq - b3eq)_ + KLp
K

2nlnR(Ol + o2) = 0

(J2eq + J3eq )#"+ J# + (b2eq + b3eq)_ + K@ - _2nlnR(O 1 - G2) = 0

(16)

(17)

(18)

(19)

(2O)

(21)

State Space Model

The equations of motion developed in the previous section represent a coupled,
four-degree-of-freedom, eighth order model with two inputs Tml and Tm2. Since
it is convenient to use multivariable techniques for analysis and control of systems
of this type, we wish to express the model in the state space form. An assumption
that would considerably simplify the formulation is that JceQ is negligible in
comparison to the remaining inertia parameters. This assumptfon is justified here
because the cross inertia term Jc is usually small compared to the direct inertia
terms and because the transmission ratio n I is larger than unity. Accordingly,
Jceq is neglected in the analysis that follows.

The state space model is given by

= Ax + Bu (22)

y_ = Cx + D__U_u (23)

The state vector x is defined as

x : [91, _i' e2' _2' _' 3, _, $]T (24)

and the input vector u is given by



u = [Tml, Tm2]T (25)

Torques transmitted through the two drive rollers, as measuredby the torque sensors,
and the roll (yaw) angle and the pitch angle, as measuredby the roll and pitch
encoders, are taken as the system outputs:

Yl = TI = K(OI/nR - 03) = K(Xl/nR " nlx5 - nlx7) (26)

Y2 = T2 = K(O2/nR - 04) = K(x3/nR - nlx5 + nlx7) (27)

Y3 = _ = x5 (28)

Y4 = ¢ = x7 (29)

With this choice of variables, the system matrix is given by

£ 0 0 0 0 0 00

-a1

0

-a 2 0 0 a3 0

0 0 I 0 0

A = 0 0 -a I -a 2 a 3 0

0 0 0 0 0 I

a4 0 a4 0 -a 5 -a 6

0 0 0 0 0 0

a7 O -a 7 0 0 0

the input distribution matrix is given by

_-0 0 -

1/Jle q 0

0 0

B = 0 I/Jle q

0 0

0 0

0 0

-0 0 _

I0

a3 0

0 0

-a 3 0

0 0

0 0

0 I

-a 8 -a 9

(30)

(31)



and the output gain matrix is given by

C

- K/n R 0 0 0 -Kn I 0 -Kn I

0 0 K/n R 0 -Kn I 0 Kn I

0 0 0 0 I 0 0

0 0 0 0 0 0 1

0

0

O_

(32)

Note that there are no feedforward paths in the model. Accordingly,

D =0 (33)

Also the following parameters have been defined:

JleqnR

(34)

bleq

a2 =1[_eq

(35)

KnI

a3 = _leqnR

(36)

K

a4 - 2nlnR(J2eq - J3eq)-

(37)

K

a5 = (J2eq - J3eq )

(38)

: (b2eq - b3e q)

6 (J2eq - J3eq )

(39)

K (40)

7 2nll_R(J2eq + J3eq_-

a8 = (J2eq + J3eq )

K (41)

(b2eq + b3e q)

a9 = (J2eq + J3eq )

(42)

This state space model will be used in the subsequent study of the traction-drive
joint.
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PERFORMANCE EVALUATION

Parameter Values

Parameter values are chosen in consultation with Oak Ridge National Laboratory
and product data sheets, to represent the true inertia, stiffness, and damping
properties of the joint. The following values are used

J1 = 0.04 oz.ln.s 2
J2 = 0.07 oz.ln.s 2
J3 = 0.03 OZ.ln.s 2
J4 = 0. i0 oz.ln.s 2
J51 = 0,80 oz.ln.s 2
J52 = 0.40 OZ.ln.s 2
J6 = 0.50 oz. n.s 2
nR = 30 n I = 3.75
K = 30000.0 oz.in/rad

bI = 0.003 oz.in/rad/s
b2 = 0.004 oz.in/rad/s
b 3 = 0.003 oz.in/rad/s
b4 = 0.003 oz.in/rad/s
b51 = 0.003 oz.in/rad/s
b52 = 0.003 oz.in/rad/s
b6 = 0.003 oz.in/rad/s

With these numerical values the matrices of the state space model become

A =

0 0 0 0 0 0 0 0
-830. 0 0 0 93570. 0 93570. 0

0 0 0 0 0 0 0 0
0 0 -830. 0 93570. 0 -93570. 0
0 0 0 0 0 0 0 0

2030. 0 2030. 0 -457630. 0 0 0
0 0 0 0 0 0 0 0

1930. 0 -1930. 0 0 0 -434080. 0

m

- 0 0
24.9515 0

0 0
0 24.9515
0 0
0 0
0 0
0 0

and

C =

1000. U 0 0 -112500. 0 -112500. 07

0 0 1000. 0 -112500. 0 112500. 0J0 0 0 0 1.0 0 0 0
0 0 0 0 0 0 1.0 0

A commercially available software package for analysis and design of control systems
is used in the studies described below. First the joint model is programmed in to
the system using the DIARY capability of the software package, Next controllability,
observability, stability, and response studies will be conducted. Finally control
studies will be performed.

Controllability

A system is said to be controllable if its state vector can be changed from some
arbitrary initial vector value to any arbitrary final (vector) value in a finite time

12



and using a finite control effort [2]. This is indeed a requirement for any
well-behaved control system. For the present case of time invariant systems the
necessary and sufficient condition for controllability is

Rank [B, A B, A2B, ...., An-IB] = n (43)

in which n is the order of the system. For the joint model developed here, n = 8,
and it was verified that the controllability condition is satisfied. This meansthat
we should be able to realize any joint response that we desire or able to control the
joint in any mannerby using appropriate inputs.

Observability

The joint model developed in this paper has eight states and four outputs. If

all eight states can be measured and used in controlling the joint, it is known that

the joint can be controlled in an optimal manner, and that stability of the system

can be improved in an arbitrary manner. But it is not always possible or convenient
to measure all state variables in a system. Then the question arises whether it is

possible to determine the value of the state vector at any arbitrary instant by

measuring the output vector from that instant for a finite period of time. The
system is said to be observable if and only if this is possible [2].

For the time-invariant model developed here, the necessary and sufficient

condition for observability is

Rank [CT, ATc T, (AT)2 CT, .... , (AT)n-lc T] = n (44)

It was verified that the traction-drive joint as defined above, is observable. It

follows that output feedback can be substituted for complete-state feedback without

compromising the joint performance. It can be concluded that the four outputs

defined in the state model are quite adequate for servoing the joint.

Further study revealed that the system is observable with the two motion

variables (roll and pitch angles) alone. This indicates that the torque sensing is
not needed, in theory, to completely control the joint. In practice, however, torque

sensing might be quite useful. For example, a hybrid control scheme consisting of

both motion feedback and torque feedback could considerably improve the performance

of the joint under load disturbances, unknown parameters, and when Fine manipulation

under very tight motion tolerances is needed as in the case of parts assembly or in

manipulations under motion constraints where damaging forces could arise even with
small motion errors.

It was found that the system is not completely observable when only one of the

two _notion variables is measured. In this case only four of the eight state

variables can be estimated. It follows that roll angle and pitch angle both are

needed for servoing the joint.

Stabi Iity
Stability is determined by the eigenvalues of the system matrix.

feedback control, the eigenvalues of A are found to be

Without any

13



-0.03 + j 677.10
-0.02 + j 659.48
-0.07
-0.07

0.0

0.0

It is noted that the open-loop system is marginally stable, as indicated by the zero

eigenvalues. This is to be expected in view of the fact that the joint is driven by
two actuators each of which having a characteristic equation of the form S(TS+I).

Feedback control is needed to stabilize the joint. This is provided by measuring the
outputs and feeding them through constant gain amplifiers; the typical servo
configuration.

Open Loop Response

Several simulation runs were carried out in order to study the open-loop

response of the joint. Unit step inputs of motor torques were used throughout. As

expected, when the motor torques were equal in magnitude and direction, the response
was found to be a pure roll tnotion at the output _mber without any pitch motion.

Similarly, when the motor torques were equal in magnitude but opposite in direction,

the output member underwent a pure pitch motion, without any roll motion. For other

combinations of torque inputs, both roll and pitch motions were simultaneously

present. These observations confirm the behavior that is expected from the actual
joint.

For example, consider the response of the joint when subjected to unit-step

motor torques that are applied in the same direction. The torque response T1 at
one drive roller is shown in Figure 5. The torque response T2 at the other drive
roller is shown in Figure 6. The roll response of the output member is shown in

Figure 7. In this case the pitch response will be practically zero. If, however,

the motor torques are applied in opposite directions, the roll response will be zero

and the pitch response will be similar to what is shown in Figure 7. Note that the

slope of the angular response curve becomes constant eventually. This is the

steady-state condition of constant speed. Under this condition, the torques at

various locations of the joint are utilized exclusively to overcome damping. Damping

torques are distributed in such a manner that large torques appear at high-speed
components of the traction drive and small torques at low-speed components.

Accordingly, with the speed ratios used in the present simulation, most of the

damping torque will be concentrated near the two motors. Initially a large torque is

needed to accelerate the low-speed components such as the output side of the drive
rollers, but eventually these torques will settle down to small values. This

explains the shapes of the torque response curves given in Figure 5 and Figure 6.

If the speed reductions are eliminated, the torque distribution will become more

uniform. For example, results obtained using nR = 1 and nI = 1, and for a motor
torque of 1.0 oz.in, indicated that in this case the torque at the drive roller

output reaches a peak of about 1.2 oz.in and eventually settles down to a value of

about 0.5 oz.in. Naturally, the speed distribution will also depend on the values of
nR and n1.

Several more simulations were carried out to study the effects of other types of

parameters on the joint response. Notably, when damping is increased the

steady-state roll and pitch speeds reduce in proportion. In particular, if all

14



damping constants are increased by a factor of 10 while keeping the other parameters
the same, the eigenvalues of the open-loop system become"

-0.25 + j 677.10
-0.25 _ j 65g.4!3
-0.75
-0.75

0.0
0.0

Note that the stable eigenvalues have become more stable while the zero eigenvalues
are not affected. In particular, the real parts of the eigenvalues have increased by
approximately a factor of i0 while the natural frequencies are virtually unchanged.
The torque distribution will also be affected by this, large increases being noted at
high-speed components.

When the stiffness of the drive rollers is decreased, the primary frequency of

the torque response decreases, while the roll and pitch motion responses remain
almost unaffected. For example if the stiffness is decreased by a factor of i0
(i.e., K = 3000 oz.in/rad), keeping the other parameter values unchanged, the
open-loop eigenvalues of the joint become:

-0.03 + j 214.12
-0.02 + j 208.55
-0.07
-0.07

0.0
0.0

Here the natural frequencies of the complex eigenvalues have been reduced by a Factor
of approximately _ while the real eigenvalues are not influenced. It follows that
the natural frequencies of the joint are directly affected by the stiffness of the
drive rollers.

CONTROL CONSIDERATIONS

Servo Control
In the study outlined above it was noted that the traction-drive joint was

completely controllable. Furthermore, it was noted that the joint was completely
observable with just the roll angle and the pitch angle as outputs. It follows that
the joint can be servo controlled using roll and pitch feedbacks alone. But since
torques transmitted through the drive rollers are also measured, all four output
variables can be used in the feedback controller design for the joint.

To illustrate the level of improvement that is realizable under servo control, a
linear quadratic regulator (LQR) is designed for the joint using complete state
feedback. A similar performance level is possible with feedback of the roll and
pitch angles alone because the states are completely observable even with these two
outputs.

The performance index that is minimized in the design is

r_[xTRx xP.I. = ! ___ + uTRuu]dt (45)
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with

R = diag (0. 0 O. O. I O, 0 1.0, 0.)
I x ' • , , , • • ,

R = diag (0.05, 0.05)
--U

This provides a constant-gain feedback controller of the Form:

= K x (46)

The optimal gain matrix is given by

U.0281 0.0445 0.0 0.0 0.0055 0.0091 0.0057 0.0095

0.0 0.0 0.0281 0.0445 0.0055 0.0091 -0.0057 -0.0095

When this controller is included in the joint, the step response of the roll angle

becomes as shown in Figure 8. This should be compared with the open-loop step

response shown in Figure 7, which was obtained under the same (step) torque input.

In particular, good rise time has been achieved without introducing a large

overshoot. Also, fast settling to the steady-state angle is seen. The eigenvalues
of the closed-loop joint are computed to be:

-0.03 + j 677.10

-0.02 + j 659.48

-0.59 + j 0.59

-0.59 + j 0.59

Note that the free integrators in the open-loop joint have been modified to a stable

pair of complex eigenvalues. The stable pair of real eigenvalues in the open-loop

joint has also beerl transformed into a stable complex pair. It can be concluded that

satisfactory performance of the traction-drive joint would be possible with a

suitable joint servo using at least roll and pitch angle feedback.

Dynamic Coupling and Nonlinearities

The foregoing study reveals that a traction-drive unit can provide a reasonably

well-behaved manipulator joint• Independently operating, each joint will behave in a

desired manner under servo control. When several such joints are used in a single

robot, there will be unavoidable dynamic coupling among joints. Due to these inter-

actions, accurate performance of the manipulator will not be possible in general if

the joints are controlled independently. Dynamic performance of the manipulator can

be improved by employing a control scheme that takes into account dynamic inter-
actions among joints. Another factor that would need attention is the nonlinear

nature of the manipulator. There are three basic sources of nonlinearity in a

manipulator; dynamic nonlinearities, geometric nonlinearities, and physical
nonlinearities. Dynamic nonlinearities arise due to nonlinear acceleration terms

such as coriolis and centrifugal accelerations that are unavoidable in general.

Geometric nonlinearities will be present due to the nonlinear geometric transfor-

mations that would be necessary in formulating the kinematics of a multi-degree-of-

freedom manipulator. To explain this source of nonlinearity, note that what is

usually specified is the end effector motion of a robotic manipulator. The

corresponding joint motions have to be determined. The n_tion of a particular link
relative to the adjoining link can be expressed as a transformation matrix that
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contains trigonometric functions of the corresponding joint variable. These
nonlinear terms (trigonometric functions) appear in the overall relationship between
the end effector motion and the joint motions. Physical nonlinearities manifest
themselves in such forms as coulomb friction and backlash. Effects of nonlinearities
are neglected whenlinear control techniques are used in the analysis and design of
joint servos, and this can produce serious errors. Furthermore, for accurate
performance, unknowndynamic effects including link flexibility and unmodeledmotor
characteristics should be compensatedthrough control. Also important is the
uncertainty of parameter values. Measurementerrors, signal noise, and external
disturbances are factors that can degrade the performance of any control system.

Multivariable control techniques that are conventionally classified as "modern
control" are very effective in compensating for dynamic interactions, nonlinearities,
unknowndynamics, parameter errors, signal noise, and external disturbances. Many
multivariable control methods have been proposed for robotic manipulators. These
include adaptive control, nonlinear feedback control, variable structure control, and
heuristic control strategies. In model-referenced adaptive control, the manipulator
is forced to follow the response of a reference model subject to the sameinput, by
continuously adjusting the parameters of the feedback controller [6]. In
least-squares adaptive control, the parameters of the feedback controller are
continuously adjusted employing an accurate model for the manipulator, so that a
quadratic error function of the manipulator trajectory is minimized [7]. In
nonlinear feedback control, a nonlinear feedback law is used to produce a linear
behavior in the manipulator so that linear control loops could be used effectively
[8]. In variable structure control or sliding modecontrol, the state space is
partitioned into several subspaces, each having its own control law [9]. Then a
controller is switched on depending on the response location of the manipulator in
the state space so as to force the response along a desired hypersurface (sliding
surface). In heuristic control, control rules developed using someknowledge base,
including past experience, expert opinion, and observed performance, are used to
control the manipulator whenthe conditions are vague or not well defined [(fuzzy) or
defined in a linguistic mannerand when satisfactory hard algorithms cannot be
determined for control]. Here control decisions are madeby an inference engine
depending on the present status of the response (context) by searching the rule base.

many of these control methods are model-based techniques. The control effort in
a 1_del-based technique can be reduced by improving the accuracy of the model. Of
course, there are methods such as model-referenced adaptive control that do not
depend on a _del for the manipulator. Nevertheless, the independent performance of
a joint can be used as the reference for the performance of that joint when
responding as a component of an overall system (complete manipulator). Even from
this point of view, the present study of a single manipulator joint would be useful.

It is known that the type of robots that is considered in the present study will

possess redundant kinematics. Ways to utilize kinematic redundancy in an effective

and optimal manner should be addressed. One proposition [10] is for the design of

end effector trajectories that will minimize the dynamic reactions (interaction) of

the manipulator on the supporting structure, say, a space station. Also flexibility

(or, dexterity) of manipulation could be improved using kinematic redundancy, for

example, in the context of avoiding obstacles and singular configurations of

manipulator.
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CONCLUSION

This paper presented an evaluation of dynamic characteristics of a prototype
traction-drive joint developed by NASA. A dynamic model was developed using the
Lagrange formulation. Controllability, observability, stability, and response
characteristics of the joint were studied. The joint was Found to be controllable

using the motor torques as inputs. The joint was found to be observable with the

roll (yaw) and pitch outputs alone. Hence, the measurement of the entire state

vector is not necessary for achieving the optimal performance. In particular, the

torque measurements available in the present joint design, are not needed in theory.

Accuracy of the measured torques will play a significant role in determining the

utility of these torques in the manipulator control. For example, high noise levels
in the torque signals could lead to instabilities in the manipulator. This is

particularly true because torque signals are high-bandwidth measurements that should

occupy inner feedback loops whereas the motion signals are relatively low-bandwidth

measurements. These torque measurements have practical benefits, however,
particularly in hybrid force-motion control. This method of control is known to be

effective in manipulations under motion constraints and in fine manipulation.

Furthermore, control bandwidth can be improved by employing torque sensing in the

control system. But torque measurements alone cannot provide a satisfactory control
system, in practice. The joint was found to be marginally stable without servo

control, as anticipated. A linear quadratic regulator (LQR) was implemented on the

joint to determine a basis for evaluating the performance of the joint under servo

control. The response of the joint was found to be quite satisfactory under LQR

control. In particular good stability characteristics were observed. Rise time,

overshoot, and settling time were also found to be acceptable.

In evaluating the performance of a manipulator that employs more than one
traction drive joint in a coordinated manner, several factors that have not been
included in our final analysis have to be considered. In particular, various types
of nonlinearities (e.g., coriolis and centrifugal accelerations, kinematic
nonlinearities, and coulomb friction), dynamic coupling among joints, external
disturbances, and parameter errors can have a significant influence on the
performance of the robot.
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J = Momentof inertia
b = damping constant
K = stiffness
T = torque
n = gear ratio
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